

Product Line Engineering for NGO Projects

Fabio Calefato^{*}, Roberto De Nicolò[†], Filippo Lanubile^{*}, Fabrizio Lippolis[†] ^{*}University of Bari, Italy [†]Informatici Senza Frontiere, Italy

ICSE PLEASE 2015 - Florence - May 19, 2015

2

Collaborative Development Group (Collab)

- Addresses the problem of distance in distributed workgroups
- Develops tools for virtual teams
 - with a special focus on the fields of collaborative / global / social software development

- 1 professor,
- 2 senior research assistants
- ~15 (MSc + BSc) final-year students per year
- Recent collaborations
 - Daniela Damian @Uvic
 - Distributed requirements engineering and CMC theories
 - Rafael Prikladnicki @PUCRS
 - Collaboration augmented with automatic translation
 - Darja Smite @BTH
 - Evidence-based cost-savings in GSE

ICSE PLEASE 2015 - Florence - May 19, 2015

3

Informatici Senza Frontiere (ISF)

- Italian NGO founded in 2005
- 10 regional sections, 300+ members
- Works on IT projects to fight digital divide
 - Emergencies
 - Marginalization
 - Difficulties

in Italy and developing countries

A few ISF projects

sensoltre

OS Hospital mgmt system used in 14 development countries

Tactile art for the blind

OH Open Hospital

Musical instruments for people with disabilities

ISF & Collab partnership

- Increase of the pool of volunteers to sustain existing and new projects
 - Students fully committed to projects for at least 3 to 6 months
- Development process improvement
 - Adopted an agile process with sprint planning and pull request-based code reviews
- Guidance in technology selection (Technical Board)
 - Suggest emerging technologies to improve existing solutions or address new problems

Three assistive technologies projects

ISA – I Speak Again

Paperboy (aka Strillone)

A few lessons learned

- Pick technologies among those mastered by ISF senior members
- Refactorings must be designed to be carried out by just one student
- ISF senior members prefer to coordinate no more than two students at the same time on the same project
- High variability in human performance holds for volunteering students too
 - divide project issues into Urgent, Hard, Doable
 - urgent work (e.g., hot fixes) always a senior member's responsibility

The problems with development at ISF

- Literally no or very limited budget for carrying out projects
- No financial incentives for developers
- Need to coordinate between geographically distributed contributors
- High turnover rate

How can we improve the development process while also increasing the sustainability?

- e.g., decrease of labor need

Features ISA IMA mo

NGO projects as product lines

	Eye tracking	\checkmark	\checkmark
Core	UI dashboard	\checkmark	\checkmark
assets	DB access	\checkmark	\checkmark
	Networking	\checkmark	\checkmark
Variabi- lities	Virtual keyboard	\checkmark	
	Messaging	\checkmark	
	Power wheelchair		
	control		•
	Home automation		\checkmark

- Setup an open-source SPL model
- ISA and IMA projects reengineered into a family of related systems
- Only available resources:
 - Google for Nonprofits
 - GitHub for Nonprofits
 - Volunteers' time and goodwill

seen as examples of OS SPLs

 Kernel config and packagedependency languages are equivalent to variability models

Both Linux Kernel and distros

- Lean infrastructure
 - No SPL ad-hoc solution, mostly email and git

OS SPL: The case of Linux

dictator

blessed

repository

Branching model

- Main branches
 - core
 - product
 - integration
- Supporting branches
 - feature
 - fix

Is there a chance that PLE

May I have your feedback?

- would be an overkill given the size of our projects?
- Is specific tool support just necessary for a successful SPL or can our lean infrastructure be enough?
- Which variability modelling technique would work best in our case?
- Can we deal with variability management mostly through repo branching?

ISA-IMA SPL

+ Increased productívíty / qualíty

Pros

+ Decreased labor needs / costs

Cons

- Re-engineering effort steals resources from further development
- Lack of experience with
 PLE
- Strong commitment
- Need for adequate
 organizational
 structure, processes and
 tools

...

